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Abstract. New models of film flows down inclined planes have been derived by combining a gradient
expansion at first or second order to weighted residual techniques with polynomials as test functions. The
two-dimensional formulation has been extended to account for three-dimensional flows as well. The full
second-order two-dimensional model can be expressed as a set of four coupled evolution equations for four
slowly varying fields, the thickness h, the flow rate q and two other quantities measuring the departure
from the flat-film semi-parabolic velocity profile. A simplified model has been obtained in terms of h
and q only. Including viscous dispersion effects properly, it closely sticks to the asymptotic expansion in
the appropriate limit. Our new models improve over previous ones in that they remain valid deep into
the strongly nonlinear regime, as shown by the comparison of our results relative to travelling-wave and
solitary-wave solutions with those of both direct numerical simulations and experiments.

PACS. 47.20.Ma Interfacial instability – 47.20.Ky Nonlinearity (including bifurcation theory)

1 Introduction

Film flows down inclined planes [1,2] are of special interest
in the study of pattern formation and the transition to
space-time chaos. In particular, they belong to the class
of open flows and, as such are expected to bring novel
features [3] when compared to closed extended systems,
typically convecting systems, to which many studies have
been devoted [4].

Physically speaking, the problem is well posed. A
trivial solution to the Navier-Stokes equations, serving
as basic flow, is easily found in the form of a steady
uniform parallel flow with parabolic velocity profile, of-
ten called Nusselt’s solution. Thin films over sufficiently
steep surfaces turn out to be unstable against long wave-
length infinitesimal perturbations, i.e. with wavelengths
large when compared to the thickness of the flow, the
dynamics of which is essentially controlled by viscosity
and surface tension effects. Close to the threshold these
waves present themselves as streamwise surface undu-
lations free of spanwise modulations (“two-dimensional”
waves) emerging from a supercritical (i.e. continuous) bi-
furcation. Farther from threshold, they saturate at finite
amplitudes and, depending on control parameters, may
develop secondary instabilities involving spanwise modu-
lations (“three-dimensional” instabilities) or first evolve
into localized “solitary” structures that subsequently
destabilize [5] up to developed space-time chaos.

The theoretical understanding of the problem start-
ing directly from the full Navier-Stokes (NS) seeming out
to reach, one might hope some enlightening from their
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numerical investigation. However this remains a difficult
task owing to the presence of a free boundary, so that
the two-dimensional case is the only one to be reliably
implemented [6,7]. In the same vein, realistic results can
be obtained [8] from a simplification of the NS equations
within the framework of the so-called boundary layer (BL)
approximation incorporating the condition that stream-
wise gradients are small when compared to cross-stream
variations [9], but one is left with a problem that has
the same space dimensionality as the original one. At
any rate, the numerical approach, even restricted to the
two-dimensional case, does not give much insight into
the instability and pattern-formation mechanisms. The
derivation of reliable simplified models retaining the most
relevant physical features of the problem would thus be
an important step towards the understanding of the non-
linear development of waves in transitional film flows.

As a matter of fact, many models have been de-
rived since the pioneering work of Kapitza [10]. On gen-
eral grounds, the first step in any modeling strategy
seems to be an expansion of the problem in powers of
a small parameter ε ∼ |∇h|/h � 1, called the film
parameter [11–13], since even in the strongly nonlinear
regime the height h of the waves remains small when com-
pared to their wavelength. In a second instance, at the
moderate Reynolds numbers of interest, the flow is con-
trolled by surface tension effects and viscous dissipation
and, via the slaving principle [14], the latter is expected
to permit the elimination of most local internal flow vari-
ables that are bound to follow the slow evolution of the
film thickness (and possibly other local average flow quan-
tities). The main idea underlying modeling attempts is
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therefore to take advantage of this enslaving to reduce the
space dimensionality of the problem by eliminating the
cross-stream flow dependence and keeping explicit only
the streamwise and possibly the spanwise space depen-
dences.

The complete elimination of flow variables yields one-
equation models governing the effective dynamics of the
local film thickness. In the two-dimensional case, their
general expression reads ∂th = G(hn, ∂xmh), where G in-
volves various algebraic powers n and (streamwise) dif-
ferentiation orders m of h. Their prototype is Benney’s
equation [11,12]:

∂th + h2∂xh +
1
3
∂x

[(
2
5
h6−Bh3

)
∂xh+Γh3∂xxxh

]
= 0

(1)

that correctly describes the onset of the waves and their
weakly nonlinear development analyzed within the frame-
work of dynamical systems theory in [15]. In the limit
of small amplitude modulations, equation (1) turns into
a Kuramoto-Sivashinsky (KS) equation [16] thoroughly
studied in [17,18].

Unfortunately, Benney’s equation fails to reproduce
the behavior of the film outside a close neighborhood
of the threshold. Its solutions indeed experience finite-
time blow-up at moderate Reynolds numbers, as shown
in [15,19]. By contrast, neither the KS equation nor the
full NS equations [6] or their BL approximation [8,20]
seem to behave so wildly. The situation is not improved
by pushing the gradient expansion to higher order, which
leads to a more complicated equation [13] with no better
properties. Though Ooshida has recently shown that this
catastrophic behavior could be cured by regularizing the
expansion using a Padé approximant technique [21], far
from threshold, this remains insufficient and alternative
approaches that do not lead to a single effective equation
for the film thickness are needed.

Genuine modeling usually rests on low order trunca-
tions of weighted-residual approaches. In such methods,
the primary aim of which is the search of specific solu-
tions with given accuracy, the variables are expanded on
a basis of test functions and one requires that the equa-
tions be fulfilled by projecting them on a series of weight
functions and canceling the corresponding “residues”.

A large spectrum of methods exist depending on the
nature of the projection rule [22]. For example, in colloca-
tion methods weight functions are Dirac delta-functions
centered at given points. The simplest integral method
just asks that the equation be fulfilled on average. In the
present problem, considering boundary-layer equations at
lowest order and assuming that the velocity profile is
parabolic, one obtains Shkadov’s model [23]:

∂th = −∂xq, (2)

∂tq = h− 3
q

h2
− 12

5
q

h
∂xq +

(
6
5
q2

h2
−Bh

)
∂xh

+ Γh∂xxxh, (3)

which is apparently free of finite-time blow-up but fails to
give a quantitatively accurate description of the instabil-
ity threshold. The limitations of Shkadov’s model derive
from the lack of freedom in the description of the hydrody-
namic fields and the too rustic character of the consistency
condition expressed via the averaging. In order to improve
over (3), Prokopiou et al. developed a second-order theory
resting on the same simple averaging approach [24] at risk
of finite-time singularities.

Refined approximations of the flow and/or other
weighted residual methods have been developed in order
to get better results. Improved models were obtained by
expanding the hydrodynamic field on different functional
bases of the cross-stream variable y, using various pro-
jection rules [25,26]. In some cases, center manifold tech-
niques were exploited to eliminate strongly damped veloc-
ity modes, thus reducing the number of relevant governing
fields [27]. In the absence of clear physical meaning for the
coefficients appearing in the expansion, the interpretation
of such studies was not straightforward and one was often
confined to a comparison of the obtained output with that
of concurrent models and numerical solutions of BL or NS
equations, or with the results of laboratory experiments.
A review of early modeling attempts can be found in [28].

In a previous paper [29], we derived one such model
using a mixed integral-collocation method. It was writ-
ten in terms of three partial differential equations for
three coupled slowly varying fields, the thickness h of the
film, the local flow rate q, and a supplementary variable
τ measuring the departure of the wall shear stress from
that predicted by a parabolic velocity profile. The veloc-
ity field was expanded on test functions that were the
specific polynomials appearing in the derivation of Ben-
ney’s equation. Though our model gave satisfactory re-
sults for the instability threshold and the shape of the
waves at moderate distance from threshold, when com-
pared to both laboratory experiments and direct numer-
ical simulations (DNSs), it still suffered from finite-time
blow-up sufficiently far from threshold.

In this paper we develop a systematic modeling strat-
egy intended to overcome previously mentioned limita-
tions and we show that the standard Galerkin method,
in which the sets of test functions and weight functions
are identical, yields the optimal model most economically.
The convergence of various other approximations obtained
by different weighted-residual methods towards this opti-
mal model will be presented in a separate note [30]. The
geometry of the problem and the set of primitive equa-
tions are recalled in Section 2. We demonstrate the expan-
sion procedure in the two-dimensional case at first order
in Section 3. The derivation of the second-order model
is much more complicated. It is sketched in Section 4
where the final result is given, the complete calculation
being developed elsewhere [31]. We then turn to the three-
dimensional first-order model in Section 5 and extend
it phenomenologically to second order. Finally, we com-
pare different approximations and conclude in discussing
prospective applications in Section 6.
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Fig. 1. Fluid film flowing down an inclined plane: definition
of the geometry.

2 Governing equations

The geometry is defined in Figure 1. The inclined plane
makes an angle β with the horizontal and x̂, ŷ, and ẑ are
unit vectors in the streamwise, cross-stream, and span-
wise directions respectively. For the moment, we restrict
ourselves to the two-dimensional case where the solution
is independent of coordinate z. The supplementary terms
arising in the three-dimensional case will be added in due
course (Sect. 5).

Here we turn directly to dimensionless equations (see
also [29]) and choose a scaling essentially defined from the
fluid properties and the geometrical flow conditions avoid-
ing any reference to the unperturbed film thickness or flow
rate. The length and time units are constructed from g or
rather g sinβ (LT−2) and the kinematic viscosity ν = µ/ρ
(L2T−1), which yields L = ν2/3(g sinβ)−1/3 and T =
ν1/3(g sinβ)−2/3 so that the velocity and pressure units
read U = LT−1 = (νg sinβ)1/3 and P = ρ(νg sinβ)2/3.
The surface tension is then measured by the Kapitza num-
ber Γ = γ

/[
ρν4/3(g sinβ)1/3

]
.

The basic 2D dimensionless equations read

∂tu+ u ∂xu+ v ∂yu = −∂xp+ 1 + (∂xx + ∂yy)u, (4)
∂tv + u ∂xv + v ∂yv = −∂yp−B + (∂xx + ∂yy) v, (5)

∂xu+ ∂yv = 0 (6)

where u and v are the streamwise (x) and cross-stream
(y) velocity components, p is the pressure. Parameter B =
cotβ, that measures the effects of the slope, is zero when
the wall is vertical, β = π/2. These equations must be
completed with boundary conditions at the free surface
y = h and the plate y = 0:

∂th+ u
∣∣
h
∂xh = v

∣∣
h
, (7)

Γ ∂xxh[
1 + (∂xh)2

]3/2 +
2

1 + (∂xh)2

[
∂xh

(
∂yu
∣∣
h

+ ∂xv
∣∣
h

)
−(∂xh)2∂xu

∣∣
h
− ∂yv

∣∣
h

]
+ p
∣∣
h

= 0, (8)

2∂xh
(
∂yv
∣∣
h
− ∂xu

∣∣
h

)
+
[
1− (∂xh)2

] (
∂yu

∣∣
h

+ ∂xv
∣∣
h

)
= 0, (9)

u
∣∣
0

= v
∣∣
0

= 0. (10)

Equation (7) is the kinematic condition associated with
the fact that the interface h(x, t) is a material line, (8, 9)
express the continuity of the normal and tangential com-
ponents of the stress tensor at the interface and (10)
stands for the no-slip condition at the rigid bottom.

Condition (7) at y = h will be rewritten in integral
form as

∂th+ ∂xq = 0, (11)

where q(x, t) =
∫ h(x,t)

0 u(x, y, t)dy is the local instanta-
neous flow rate. In this unit system where g sinβ = ν =
ρ = 1, the Reynolds number R is hidden in the boundary
condition fixing the flat film Nusselt thickness hN. The
flow rate is indeed given by qN = 1

3h
3
N, which allows one

to define the mean velocity uN as qN/hN. Accordingly,
R = uNhN/ν is numerically equal to qN. Surface tension
effects are often measured using the Weber number that
reads W = Γ/h2

N.

3 Two-dimensional first-order model

The set of equations consistent at first order in the long-
wavelength expansion (ε = |∂xh|/h � 1), usually called
the (first-order) boundary-layer equations by reference to
the classical Prandtl’s equations [32], then reads

∂tu+ u∂xu+ v∂yu− ∂yyu = 1−B∂xh+ Γ∂xxxh, (12)
∂xu+ ∂yv = 0, (13)

∂yu
∣∣
h

= 0, (14)

u
∣∣
0

= v
∣∣
0

= 0, (15)

along with (11) equation (12) is the only non-trivial com-
ponent of the Navier-Stokes equations in the boundary
layer approximation after elimination of the pressure. It
should be noticed that the linear term Γ∂xxxh on its right
hand side is formally of third order and thus should not
appear at this stage except when Γ is large enough so
that it enters the problem at the same level as ∂xh, i.e.
Γε2 = O(1), which is the usual assumption made. Notice
that the stress-free boundary condition (14) is homoge-
neous at this order. The incompressibility condition (13)
also shows that the velocity component v is a slow vari-
able. By contrast, the kinematic condition (11), which is
in fact valid at all orders, relates slow variables to each
other and will serve as a compatibility condition for the
solution at every order.

Using the continuity equation (13) and the no-slip
boundary condition (15) on v, one can replace v every-
where by −

∫ y
0
∂xu dy so that the only remaining dynam-

ical variable is u(x, y, t) which, according to the idea of
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enslaving, is further searched by separation of variables as
an expansion taken in the form

u(x, y, t) =
∑
j

aj(x, t)fj(ȳ), (16)

where ȳ is the cross-stream coordinate rescaled by the
local film thickness h(x, t), i.e. ȳ = y/h. Both h and the
expansion coefficients aj are supposed to be slowly varying
functions of time t and the streamwise coordinate x.

The fact that (i) the basic (Nusselt) flow profile is a
semi-parabola, u(y) ∝ ȳ(1− ȳ/2), (ii) in Benney-like long
wavelength expansions, corrections to this profile are poly-
nomials in ȳ, (iii) the set of polynomials of increasing order
forms a complete basis, (iv) this set is closed with respect
to differentiations and products involved in the governing
equations, makes it a reasonable choice to take polynomi-
als as test functions.

A consistent first-order model can be obtained by con-
sidering a reduced set of test functions comprising mono-
mials up to degree 6 included. This can be shown in the
following way: assuming that the monomial of highest-
degree retained in the expansion of u is ȳn, with coeffi-
cient cn and n large enough (and > 2), let us differen-
tiate (12) n − 2 times with respect to y to get ∂ynu =
∂yn−2(∂tu+ u∂xu+ v∂yu). The left hand side is then pro-
portional to cn, while the right hand side is obviously
slowly varying. This implies that time-space derivatives
of cn are at least one order higher in the long-wavelength
expansion. Repeating the argument while decreasing n,
we immediately see that the same holds down to c3 (cu-
bic term). This is no longer the case for the coefficient c2
of the quadratic term that must contain a zeroth-order
contribution. Returning to (12) and considering inertial
terms ∂tu + u∂xu + v∂yu we see that, since they involve
supplementary differentiations with respect to the slow
variables, or product with the slowly varying quantity v,
in their evaluation we can neglect all terms involving the
cn with n > 2. We are thus left with a quadratic polyno-
mial that generates monomials of fourth degree at most.
In turn, the cancellation of these terms in the evolution
equation can only be achieved by the terms arising from
∂yyu, which will be possible if u is of degree 6, hence the
result. Assuming that u is the most general degree-6 poly-
nomial makes 7 unknown coefficients that can be reduced
to 5 by taking boundary conditions (14, 15) into account.
In fact, rather than the ȳn, it turns out convenient to ex-
pand u on the basis of test functions

fj(ȳ) = ȳj+1 − j+1
j+2 ȳ

j+2, (17)

that fulfills boundary conditions fj(0) = f ′j(1) = 0 au-
tomatically. It is easily seen that the Nusselt solution is
merely proportional to f0. A first relation between the
coefficients of the expansion and the thickness of the
film is derived from (11) after explicit computation of
q =

∫ h
0
u dy:

3q
h

= a0 +
4∑
j=1

6
(j + 2)(j + 3)

aj . (18)

Now, inserting the truncated expansion u =
∑4
j=0 ajfj

in equation (12) and neglecting all terms in aj , j > 0
involving derivatives with respect to x and t we readily
obtain a polynomial P(ȳ) of degree 4 as inferred from the
discussion above. Requiring the fulfillment of this equation
by identifying all the coefficients of this polynomial, degree
after degree, yields 5 equations for the 5 unknowns aj(x, t),
j = 0, . . . , 4. We obtain:

0 =
1
h2

(a0 − 2a1)− 1 +B∂xh− Γ∂xxxh, (19)

0 =
1
h2

(4a1 − 6a2) + ∂ta0 −
a0

h
∂th, (20)

0 =
1
h2

(9a2 − 12a3)− 1
2
∂ta0 +

a0

h
∂th

+
1
2
a0∂xa0 −

a2
0

2h
∂xh, (21)

0 =
1
h2

(16a3 − 20a4)− 1
3
a0∂xa0 +

2a2
0

3h
∂xh, (22)

0 =
1
h2

25a4 +
1
6

(
1
2
a0∂xa0 −

a2
0

h
∂xh

)
. (23)

Equations (20–23) determine the four unknowns a1, . . . , a4

in terms of a0 and h and their space-time derivatives.
They can thus be eliminated by inserting their expressions
into (19), which leads to

a0 = h2 − 1
3
h2∂ta0 +

1
6
ha0∂th−

1
10
h2a0∂xa0

+
1
30
ha2

0∂xh−Bh2∂xh+ Γh2∂xxxh. (24)

In the same way, (18) reads:

q =
1
3
ha0 −

1
45
h3∂ta0 +

1
360

h2a0∂th

− 3
280

h3a0∂xa0 +
1

504
h2a2

0∂xh. (25)

The system formed by (24, 11) with q given by (25) is then
closed for h and a0. However a0 is not an intrinsic variable
since it depends on the choice of the test functions and it
turns out preferable to express the model in terms of the
flow rate q which is intrinsic. Combining (25) and (24) we
get

0 =
3q
h
− h2 +

2
5
h2∂ta0 −

7
40
ha0∂th+

37
280

h2a0∂xa0

+
11
280

ha2
0∂xh+Bh2∂xh− Γh2∂xxxh.

At first order in the long-wavelength expansion we can
replace a0 by 3q/h in this equation and further use the
identity ∂th = −∂xq to obtain

∂tq =
5
6
h− 5

2
q

h2
− 17

7
q

h
∂xq +

(
9
7
q2

h2
− 5

6
Bh

)
∂xh

+
5
6
Γh∂xxxh, (26)
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which, together with (11), constitutes a consistent first-
order model.

System (11, 26) can be taken as a primitive problem
on which to perform a long-wavelength expansion. We as-
sume q = q(0) + q(1) where the superscript denotes the
order in differentiation ∂x and Γε2 = O(1). At zeroth or-
der it yields: 0 = 5

6h −
5
2q

(0)/h2, therefore q(0) = 1
3h

3 as
expected. At first order we get

∂tq
(0) = −5

2
q(1)

h2
− 17

7
q(0)

h
∂xq

(0)

+

(
9
7

(
q(0)

h

)2

− 5
6
Bh

)
∂xh+

5
6
Γh∂xxxh.

Making use of the expression of q(0) and substituting
−∂xq(0) to ∂th we obtain q(1) =

(
2
15h

6 − 1
3Bh

3
)
∂xh +

1
3Γh

3∂xxxh which in turn leads back to Benney’s equa-
tion (1) when inserted in ∂th+ ∂x

(
q(0) + q(1)

)
= 0.

Equation (26) can be obtained in a simpler way by
means of a standard Galerkin method. This results from
a specific feature of the method that uses for weight func-
tions the test functions themselves which, in turn, are sup-
posed to fulfill the boundary conditions. When applied
to (12), in the general case the projection step reads∫ h

0

fj(y/h)(∂tu+ u∂xu+ v∂yu− ∂yyu)dy =

2h
(j + 2)(j + 3)

(1−B∂xh+ Γ∂xxxh), (27)

of which only the term
∫ h

0 fj(y/h)∂yyu dy is of special con-
cern. Through a double integration by parts using bound-
ary conditions fj(0) = 0 and f ′j(1) = 0, in full generality

this term reads
∫ h

0
uf ′′j (ȳ) dy. In the case j = 0 for which

f ′′0 (ȳ) ≡ −1 we get∫ h

0

f0(y/h)∂yyu dy = − q

h2
(28)

by definition of q =
∫ h

0 u dy, i.e. the very special combi-
nation of the ai given by (18) we need to close the model.
For j > 0, we get a linear system that can be solved for
the aj, j > 0 as a function of a0, hence bringing no con-
straint on the evolution, while being of use to reconstruct
the flow pattern. Since a0 and 3q/h are interchangeable
in all terms containing derivatives in x or t when comput-
ing (27) for j = 0 at the considered order, equation (26)
follows immediately from this evaluation, namely

2
15
h∂ta0 −

7
120

a0∂th+
37
840

ha0∂xa0

− 11
840

a2
0∂xh+

q

h2
=

1
3

(h−Bh∂xh+ Γh∂xxxh)

when making use of (11). A similar property of the
Galerkin method will be shown below to simplify also the
second-order computation.

4 Two-dimensional second-order model

Now having fully developed our strategy at first-order, let
us sketch the main steps leading to a model consistent at
second-order. Equation (12) and boundary condition (14)
have to be completed. They read [29]

∂tu+ u∂xu+ v∂yu− ∂yyu− 2∂xxu =
1 + ∂x [∂xu|h]−B∂xh+ Γ∂xxxh, (29)

∂yu|h = 4∂xh∂xu|h − ∂xv|h. (30)

Transposing the argument leading to the conclusion that
the first order approximation to u is a polynomial of de-
gree 6 now implies that the second order approximation
is a polynomial of degree 14 (inertial term is formally
quadratic, hence of degree 12, and has to be compensated
by a term originating from ∂yyu, hence u of degree 14).
The general solution thus depends on h plus 14 supple-
mentary coefficients (condition u|0 = 0 suppresses one co-
efficient) and though their determination by identification
is still possible, it seems reasonable to find a short-cut,
which will be achieved in three steps: (i) determine the
number of independent fields required to insure consis-
tency at second order (in addition to h, only one, namely
q, was necessary at first order); (ii) construct a basis of test
functions that takes (i) into account (the fact that ∂yu no
longer cancels at y = h makes the fj less appropriate);
(iii) show that the projection of the evolution equations
onto this reduced set of test functions yields the result
most economically.

(i) The solution for u is given by expansion (16) with
coefficients derived from (20–23). In fact, when the first
order equivalence a0 = 3q/h and the mass conservation
condition ∂th = −∂xq have been used, the aj are not
independent and one can verify that

a1 + 3a2 = −4a3 = 20a4 = −3
5
h3q∂x(q/h3). (31)

The velocity field at first order can thus be written as

u = 3
q

h
f0 + a1

(
−2

5
f0 + f1 −

1
3
f2

)
+ a3

(
8
35
f0 −

4
3
f2 + f3 −

1
5
f4

)
, (32)

hence as a combination of three independent fields (q/h,
a1, a3) rather than five as could be expected naively.
The new fields a1 and a3 contribute to the second order
through the inertial term on the left-hand side of (29).
Three independent conditions will thus be required to de-
termine their evolution consistently.

(ii) In order to take advantage of the specific form of u
given by (32), it is advisable to let aside the fj , j > 0, and
to turn to appropriate combinations of the test functions
that appear in this expression. Let us denote them as gj
for clarity. Keeping g0 ≡ f0, we choose g1 as a combination
of f0 and f1− 1

3f2, and g2 as a combination of f0, f1− 1
3f2,
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and − 4
3f2 + f3− 1

5f4. Proceeding for later convenience to
a Schmidt orthogonalization — so that the correspondent
flow components present themselves as corrections to the
basic profile in a least-square sense — we arrive at

g0 = ȳ − 1
2 ȳ

2, (33)

g1 = ȳ − 17
6 ȳ

2 + 7
3 ȳ

3 − 7
12 ȳ

4, (34)

g2 = ȳ − 13
2 ȳ

2 + 57
4 ȳ

3 − 111
8 ȳ4 + 99

16 ȳ
5 − 33

32 ȳ
6. (35)

The basis is then completed by other independent polyno-
mials of increasing degree, the expressions of which have
no importance since, as shown below, the Galerkin proce-
dure avoids the determination of their coefficients. Note
however that, because the boundary condition at the in-
terface (30) is no longer independent of coordinate x, it
cannot be included in the definition of the test functions
but has to be added to the set of constraints [33].

(iii) We have now to evaluate the residues∫ h

0

gj(y/h)(∂tu+ u∂xu+ v∂yu− ∂yyu− 2∂xxu)dy

= h (1 + ∂x [∂xu|h]−B∂xh+ Γ∂xxxh])
∫ h

0

gj dy. (36)

It is readily seen that the first order evaluation of u is suf-
ficient for the computation of the inertial term, the term
−2∂xxu, and the term ∂x[∂xu|h] on the right hand side
of (36) since they all involve additional slow space-time
derivatives. So, the problem is to show that, for j = 0, 1, 2,
the remaining linear terms can be computed in closed
form, i.e. without introducing coefficients of the gj with
j 6= 0, 1, 2. This is indeed the case since by performing two
successive integrations by parts we get:∫ h

0

gj(ȳ)∂yyu dy =
[
gj∂yu

]h
0
− 1
h

[
g′ju
]h

0
+

1
h2

∫ h

0

g′′j u dy.

where primes denote ȳ-differentiation. The right-hand side
of this equation can be simplified by using boundary con-
ditions (15, 30) and the fact that the gj, j = 0, 1, 2, are
linear combinations of the fj , j = 0, . . . , 4, that fulfill
f ′j(1) = 0. The integrated terms are then reduced to a sin-
gle one, namely gj(1)[4∂xh∂xu|h−∂xv|h], that can be eval-
uated explicitly within the ansatz at the requested order.
The argument about the closure is concluded by noticing
that g′′0 ≡ −1, g′′1 ≡ 14g0− 17

3 , and g′′2 = 1485
28 g1+ 909

28 g0−13,
thus introducing no other functions of ȳ than those of the
considered reduced set.

A consistent second-order model is therefore obtained
by inserting u = b0(x, t)g0(ȳ)+b1(x, t)g1(ȳ)+b2(x, t)g2(ȳ)
into (36) with j = 0, 1, 2, and adding the continuity
equation (11) with q given by

∫ h
0 u dy. In practice, it turns

out convenient to define

b0 ≡ 3
q − s1 − s2

h
, b1 ≡ 45

s1(x, t)
h

,

b2 ≡ 210
s2(x, t)
h

, (37)

in order to implement the condition
∫ h

0
u dy = q from the

start. This choice has the virtue of making the corrections
s1 and s2 homogeneous to q thus leading to equations with
a similar structure. A tedious computation requiring the
assistance of formal algebra [31] leads to

∂tq =
27
28
h− 81

28
q

h2
− 33

s1

h2
− 3069

28
s2

h2
− 12

5
qs1∂xh

h2

− 126
65

qs2∂xh

h2
+

12
5
s1∂xq

h
+

171
65

s2∂xq

h
+

12
5
q∂xs1

h

+
1017
455

q∂xs2

h
+

6
5
q2∂xh

h2
− 12

5
q∂xq

h
+

5025
896

q(∂xh)2

h2

− 5055
896

∂xq∂xh

h
− 10851

1792
q∂xxh

h
+

2027
448

∂xxq

− 27
28
Bh∂xh+

27
28
Γh∂xxxh, (38)

∂ts1 =
1
10
h− 3

10
q

h2
− 3

35
q2∂xh

h2
− 126

5
s1

h2
− 126

5
s2

h2

+
1
35
q∂xq

h
+

108
55

qs1∂xh

h2
− 5022

5005
qs2∂xh

h2

− 103
55

s1∂xq

h
+

9657
5005

s2∂xq

h
− 39

55
q∂xs1

h

+
10557
10010

q∂xs2

h
+

93
40
q (∂xh)2

h2
− 69

40
∂xh∂xq

h

+
21
80
q∂xxh

h
− 9

40
∂xxq −

1
10
Bh∂xh

+
1
10
Γh∂xxxh, (39)

∂ts2 =
13
420

h− 13
140

q

h2
− 39

5
s1

h2
− 11817

140
s2

h2
− 4

11
qs1∂xh

h2

+
18
11
qs2∂xh

h2
− 2

33
s1∂xq

h
− 19

11
s2∂xq

h
+

6
55
q∂xs1

h

− 288
385

q∂xs2

h
− 3211

4480
q (∂xh)2

h2
+

2613
4480

∂xh∂xq

h

− 2847
8960

q∂xxh

h
+

559
2240

∂xxq −
13
420

Bh∂xh

+
13
420

Γh∂xxxh. (40)

Note that, by performing a gradient expansion with the
assumptions q = q(0) + q(1) + q(2), s1,2 = s

(1)
1,2 + s

(2)
1,2, one

recovers the exact asymptotic result at second order [13].

The complete expression of the second order model is
therefore somewhat involved. A much simpler model is ob-
tained by assuming s1 and s2 to be of higher order than
second order. Thus, their derivatives or products with h
or q-derivatives can be dropped so that they only enter
into the calculation via the terms 1

h2

∫ h
0 g′′j u dy appearing

in the evaluation of the residues (36) as noticed previ-
ously. Within this crude assumption and because g′′0 = −1,
s1 and s2 do not appear into the evaluation of the first
residue. Thus applying the Galerkin method to the second-
order problem (36) but with a single function g0 leads to
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the consistency condition:

∂tq =
5
6
h− 5

2
q

h2
− 17

7
q

h
∂xq +

(
9
7
q2

h2
− 5

6
Bh

)
∂xh

+ 4
q

h2
(∂xh)2 − 9

2h
∂xq∂xh− 6

q

h
∂xxh+

9
2
∂xxq

+
5
6
Γh∂xxxh. (41)

The new terms are on the second line. They are all gen-
erated by the second-order contributions coming from
2∂xxu + ∂x[∂xu|h] in the momentum equation (29) and
the boundary condition (30). As such they include the
effect of viscous dispersion that was lacking at first or-
der. Hereafter equations (11, 41) will be referred to as the
second-order simplified Galerkin model.

The expansion of (11, 41) now yields

q(0) =
1
3
h3,

q(1) =
(

2
15
h6 − 1

3
Bh3

)
∂xh+

Γ

3
h3∂xxxh,

q(2) =
(

7
3
h3 − 8

15
Bh6 +

212
525

h9

)
(∂xh)2

+
(
h4 − 10

63
Bh7 +

4
63
h10

)
∂xxh

+ Γh5

(
8
5

(∂xh)2∂xxh+
4
5
h(∂xxh)2

+
4
3
h∂xh∂xxxh+

10
63
h2∂x4h

)
,

and, remarkably enough, only the coefficient of the term
h9 (∂xh)2 in the expression of q(2) differs from the exact
result 127

315 , by a relative factor as small as 0.2%. Indeed,
the monomials of highest degrees appearing in the gra-
dient expansion contribute very little to the result (see
the discussion in [29]). Equation (41) is thus the result
of the application of Galerkin method using g0 only and
therefore does not take into account the corrections to the
parabolic profile introduced by s1 and s2.

Before comparing the performances of the different
models in Section 6, let us now turn to their three-
dimensional extension.

5 Three-dimensional models

At order zero in the long-wavelength expansion, the flow
is uniform and purely streamwise. A spanwise component
w 6= 0 appears as soon as it ceases to be two-dimensional
(in x and y) as a result of the deformation of the interface
in the z-direction. It is therefore a slowly varying quan-
tity, the space or time derivatives of which can then be
dropped at first order. The spanwise component of the
Navier-Stokes equations that simply reads

∂yyw = B∂zh− Γ (∂xxz + ∂zzz)h, (42)

has thus to be added to the original system in which equa-
tion (12) must be completed to account for the spanwise
dependence:

∂tu+ u∂xu+ v∂yu− ∂yyu = 1−B∂xh
+ Γ (∂xxx + ∂xzz)h. (43)

The velocity component w is submitted to the boundary
conditions

w|0 = 0, ∂yw|h = 0. (44)

Equation (42) is readily integrated to yield

w = −[B∂zh− Γ (∂xxz + ∂zzz)h]f0(y/h), (45)

where f0(ȳ) = ȳ − 1
2 ȳ

2 as before. At this order, the span-
wise flow component is therefore fully slaved to the thick-
ness h of the film. Denoting the streamwise flow rate q by
q‖ and defining the spanwise flow rate as q⊥ =

∫ h
0
w dy,

we can write the kinematic boundary condition at the in-
terface v|h = ∂th+ u|h∂xh+ w|h∂zh in flux form as

∂th+ ∂xq‖ + ∂zq⊥ = 0, (46)

in which the last term is known once h is determined:

q⊥ = − 1
3h

3 (B∂zh− Γ (∂xxz + ∂zzz)h) . (47)

The same procedure as in the two-dimensional case then
yields:

∂tq‖ =
5
6
h− 5

2
q‖
h2
− 17

7
q‖
h
∂xq‖ +

(
9
7

q2
‖
h2
− 5

6
Bh

)
∂xh

+
5
6
Γh(∂xxx + ∂xzz)h. (48)

The three-dimensional first-order model is therefore given
by (48, 46) where q⊥ is given by (47).

At second-order the derivatives of q⊥ cannot be ne-
glected so that q⊥ is an effective degree of freedom on
its own. Following the same method as for the two-
dimensional case, let us write w as

w = 3
q⊥
h
f0(ȳ). (49)

Therefore using (49, 37), where s1 and s2 are now func-
tions of z, the Galerkin method leads to

∂tq‖ =
27
28
h− 81

28
q‖
h2
− 33

s1

h2
− 3069

28
s2

h2
− 12

5
q‖s1∂xh

h2

− 126
65

q‖s2∂xh

h2
+

12
5
s1∂xq‖
h

+
171
65

s2∂xq‖
h

+
12
5
q‖∂xs1

h

+
1017
455

q‖∂xs2

h
+

6
5

q2
‖∂xh

h2
− 12

5
q‖∂xq‖
h

+
5025
896

q‖ (∂xh)2

h2
− 5055

896
∂xq‖∂xh

h
− 10851

1792
q‖∂xxh

h

+
2027
448

∂xxq‖ −
27
28
Bh∂xh+

27
28
Γh (∂xxx + ∂xzz)h

− 6
5
q‖∂zq⊥

h
− 6

5
q⊥∂zq‖
h

+
6
5
q‖q⊥∂zh

h2
− 2463

1792
∂zq‖∂zh

h

+
2433
1792

q‖ (∂zh)2

h2
− 5361

3584
q‖∂zzh

h
+ ∂zzq‖ , (50)



364 The European Physical Journal B

∂ts1 =
1
10
h− 3

10
q‖
h2
− 3

35

q2
‖∂xh

h2
− 126

5
s1

h2
− 126

5
s2

h2

+
1
35
q‖∂xq‖
h

+
108
55

q‖s1∂xh

h2
− 5022

5005
q‖s2∂xh

h2

− 103
55

s1∂xq‖
h

+
9657
5005

s2∂xq‖
h

− 39
55
q‖∂xs1

h

+
10557
10010

q‖∂xs2

h
+

93
40
q‖ (∂xh)2

h2
− 69

40
∂xh∂xq‖

h

+
21
80
q‖∂xxh

h
− 9

40
∂xxq‖ −

1
10
Bh∂xh

+
1
10
Γh (∂xxx + ∂xzz)h−

2
35
q‖∂zq⊥

h
+

3
35
q⊥∂zq‖
h

− 3
35
q‖q⊥∂zh

h2
− 57

80
∂zq‖∂zh

h
+

81
80
q‖ (∂zh)2

h2

− 3
40
q‖∂zzh

h
, (51)

∂ts2 =
13
420

h− 13
140

q‖
h2
− 39

5
s1

h2
− 11817

140
s2

h2

− 4
11
q‖s1∂xh

h2
+

18
11
q‖s2∂xh

h2
− 2

33
s1∂xq‖
h

− 19
11
s2∂xq‖
h

+
6
55
q‖∂xs1

h
− 288

385
q‖∂xs2

h
− 3211

4480
q‖ (∂xh)2

h2

+
2613
4480

∂xh∂xq‖
h

− 2847
8960

q‖∂xxh

h
+

559
2240

∂xxq‖

− 13
420

Bh∂xh+
13
420

Γh (∂xxx + ∂xzz)h

+
3029
8960

∂zq‖∂zh

h
− 3627

8960
q‖ (∂zh)2

h2

+
299

17920
q‖∂zzh

h
, (52)

∂tq⊥ = −5
2
q⊥
h2

+
9
7
q‖q⊥∂xh

h2
− 8

7
q⊥∂xq‖
h

− 9
7
q‖∂xq⊥

h

+
13
4
q‖∂xh∂zh

h2
− 43

16
∂zq‖∂xh

h
− 13

16
∂xq‖∂zh

h

− 73
16
q‖∂xzh

h
+

7
2
∂xzq‖ −

5
6
Bh∂zh

+
5
6
Γh (∂xxz + ∂zzz) h , (53)

to which the mass conservation law (46) needs to be added.
Again, the full second-order model appears to be very
complicated, which severely limits its use. Nevertheless, a
simpler, though approximate, model can again be derived
from the Galerkin method applied to the parabolic profile.
The corresponding simplified three-dimensional model is

then made of

∂tq‖ =
5
6
h− 5

2
q‖
h2

+
9
7

q2
‖∂xh

h2
− 17

7
q‖∂xq‖
h

− 97
56
q‖∂zq⊥

h

− 9
7
q⊥∂zq‖
h

+
129
56

q‖q⊥∂zh

h2
+ 4

q (∂xh)2

h2
− 9

2
∂xq‖∂xh

h

− 6
q‖∂xxh

h
−
∂zq‖∂zh

h
+

3
4
q‖ (∂zh)2

h2
− 23

16
q‖∂zzh

h

+
9
2
∂xxq‖ + ∂zzq‖ −

5
6
Bh∂xh

+
5
6
Γh (∂xxx + ∂xzz)h, (54)

together with (53, 46).

6 Discussion

In this paper, we have developed a systematic strategy to
derive, from the primitive equations, systems with reduced
physical dimensionality that we call models. The deriva-
tion is based on an expansion at first or second order in the
streamwise gradient in order to recover asymptotic results
close to the instability threshold. Weighted-residual tech-
niques with polynomial test functions are used to elimi-
nate the cross-stream dependence thought to be irrelevant.
A conventional Galerkin method has been shown to yield
the sought result most economically and consistency at
a given order can be obtained through the evaluation of
a small number of residuals, only one instead of five at
first order, and three instead of fourteen at second order.
The second-order model turns out to have a very com-
plicated structure that limits its usefulness, whereas the
first-order model is much simpler but ignores some impor-
tant physical effects such as the dispersion introduced by
viscosity. Applying the Galerkin method with a set of test
functions reduced to the semi-parabolic basic flow profile
leads to a simplified but approximate second-order model
taking into account some dominant physical effects while
remaining sufficiently tractable, especially concerning its
three-dimensional extension.

At this stage, it should be stressed that the first-
order model (11, 26), as well as the full second order
model (11, 38–40), each at its level, are optimal in the
sense that any weighted residual method based on poly-
nomial functions (both test and weight functions) can be
shown to converge to them. The convergence properties
of several methods will be analyzed elsewhere [30]. Let us
just mention that, unfortunately, the integral-collocation
method we used in [29] has in fact bad convergence proper-
ties. By contrast, instead of placing a collocation condition
at the plate, i.e. far from the surface where the instability
mechanism is at work [34], the Galerkin method performs
a weighted average that turns out to be most effective in
the present case. However, this does not guarantee us yet
that some progress has been achieved concerning the va-
lidity of our models deep inside the nonlinear domain. So,
in the following we examine them from the point of view
of the existence and properties of the strongly nonlinear
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two-dimensional waves they generate beyond threshold,
and compare our results with those published previously
in the relevant literature which we are aware of. The study
of the three-dimensional properties and secondary insta-
bilities against transverse modes is in progress and will be
the subject of another publication [35].

Two-dimensional waves that propagate without defor-
mation at speed c along the inclined plane are special solu-
tions of a dynamical system written in terms of a variable
ξ = x−ct and obtained in the standard way from the set of
partial differential equations in x and t. Solitary waves cor-
respond to homoclinic solutions joining some fixed point
to itself, along the intersection of the unstable manifold
and the stable manifold that nonlinearly extrapolate the
linear subspaces accounting for the stability properties of
this fixed point. Periodic wave-trains are described in the
same way by limit cycles in the system’s phase space.

The continuation software Auto97 and the homoclinic
bifurcation package HomCont [36] have been used to ob-
tain periodic wave-trains and one-hump solitary wave so-
lutions, with a special attention to the determination of
the speed and the shape of the waves. Concerning models
others than ours, most of the time no meaningful quanti-
tative comparisons could be drawn from the original pub-
lications. This situation obliged us to perform our own
computations using the same methodology but applied to
the corresponding analytical formulations found in the lit-
erature. Previous results, when available, are closely recov-
ered, e.g. those in [21,28,37] after proper implementation
of notational changes. In order to stick to the common use
and characterize the flow conditions, we now pass from the
Nusselt thickness hN to the Reynolds number R = 1

3h
3
N

and, occasionally, from the Kapitza number Γ to the We-
ber number W = Γ/h2

N.
Figures 2 and 3 display our results for the speed of

one-hump solitary waves (left) and their maximum height
(right) as functions of the Reynolds number in the case of a
vertical plane and for various models. The physical param-
eters correspond to the mixture of glycerol and water used
in experiments performed by Gollub et al. [5], i.e. Γ = 252.
Here the speed c is rescaled by 3uN where uN is the average
velocity of the flat film solution, so that the phase speed of
linear waves at criticality is equal to one. In the same way,
the height of the waves is rescaled by the Nusselt thick-
ness hN. Figure 3 is a close-up at low Reynolds numbers
that illustrates the grouping of the curves according to the
order of approximation in the long wavelength expansion.
We are not aware of DNSs of the Navier-Stokes equations
corresponding to the chosen conditions. This suggested
us to take for reference the results that we believe to be
the most reliable, i.e. those obtained with our full two-
dimensional second-order model (Curves 7) in order to
discuss the various models considered.

Let us begin with models in terms of a single “sur-
face equation” (for the film thickness h). Curves 0 ac-
counts for the results obtained with Benney’s equation (1)
which is asymptotically valid close to onset of waves oc-
curring at zero Reynolds number. As already known [15],
this curve turns back at R ≈ 1.49 beyond which no one-

hump solitary wave can be found. The upper part of the
curve corresponds to unstable waves and, right at the
saddle-node bifurcation, the maximum height of the wave
is about 1.4 only, which clearly indicates that the appli-
cability of the equation is restricted to very small ampli-
tudes. The second-order Benney’s equation, equation (11)
in [13], yields Curves 1, from which we see that the addi-
tional terms do not improve the situation since the turn-
back takes place at an even lower Reynolds number. This
illustrates the lack of convergence of the expansion method
motivating Ooshida’s regularization attempt by an adap-
tation of the Padé approximant method [21]. The success
of this attempt is confirmed by Curves 2, from which one
understands that the main deficiency of the primitive se-
ries of surface equations has been cured: one-hump soli-
tary waves now exist for all R. However the speed and the
amplitude of the fastest waves are clearly well below all
other predictions, which suggests that the re-summation
procedure leads to an overestimation of the strength of
the saturating nonlinearities.

All other models we have considered include more than
one equation. Many have a structure analogous to that of
the oldest one, namely Shkadov’s model (2, 3) involving h
and the local flow rate q and obtained by a simple averag-
ing of the boundary-layer equations [23]. Solitary waves it
produces have properties summarized by Curves 3. While
it is known to overestimate the value of the instability
threshold for non-vertical planes, i.e. to underestimate the
linear instability mechanism, at the nonlinear stage, the
comparison with other models shows that it also notably
delays the value at which the speed and the height of the
waves increases rapidly. Equations (19) in [24], are very
similar to our simplified Galerkin model including disper-
sive viscous terms, but with slightly different coefficients
and additional terms of higher order in the surface ten-
sion contribution. We do not show the properties of the
solitary waves generated by this model since they are not
much different from those of Shkadov’s model, except for
the fact that the additional surface-tension terms intro-
duces an artificial singularity forbidding the existence of
solutions with large gradients, so that the curve stops at
R ' 4 in the conditions considered.

Applying a center manifold reduction technique,
Roberts [27] was able to obtain a two-equation model by
eliminating all damped velocity modes except the first one.
Originally cast in terms of h and ū = 1

h

∫ h
0 u dy, this model

can be rewritten for h and q, specifically equation (14) in
reference [27]. It displays a structure similar to our sim-
plified Galerkin model, with coefficients also rather close
to ours. The differences in the coefficients of the terms we
have in common come from the fact that he used trigono-
metric basis functions instead of polynomials, which might
be questionable since sines and cosines are eigenmodes of
the free-surface linearized problem around the rest state
and not around the basic semi-parabolic profile. Some of
the additional terms present in his formulation could pos-
sibly be recovered by performing an adiabatic elimina-
tion of s1 and s2 from our full second-order model. We do
not display the results corresponding to his model because
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Fig. 2. Speed (left) and amplitude (right) of one-hump solitary waves as functions of the Reynolds number for the different
models considered. The plane is vertical and the Kapitza number is Γ = 252: curves 0: Benney’s equation (dashed); curves 1:
second-order Benney’s equation (solid); curves 2: Ooshida’s equation (solid); curves 3: Shkadov’s model (dashed); curves 4:
first-order model of [29] (dashed); curves 5: first-order Galerkin model (dashed); curves 6: second order model of [29] (solid);
curves 7: full second-order Galerkin model (solid, thicker); curves 8: simplified second-order Galerkin model (solid). “plus” signs:
two-dimensional first-order boundary layer equations [8].
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Fig. 3. Low Reynolds number close up of Figure 2, see corresponding caption.

they are practically indistinguishable from ours using the
full second-order model up to about R = 2.5. Then they
grow more slowly while high-order derivatives of h be-
come unrealistically large so that above R ≈ 3.5 we lose
confidence in the obtained results. This behavior could be
connected to the presence of the additional terms alluded
to above and possibly be cured by some regularization
“technique à la” Ooshida [21].

Let us now turn to our models. Results from the mod-
els developed in this paper are displayed as Curves 5
(first-order, Eqs. (11, 26)), Curves 7 (full, second-order,
Eqs. (11, 38–40)) and Curves 8 (simplified, second-order,
Eqs. (11, 41)), those from models in our previous pa-
per [29] as Curves 4 (first-order) and Curves 6 (second
order). From the consideration of Curves 4 that corre-
sponds to equation (58) in [29], completed by the mass
conservation equation (11), one understands that the goals
of correcting the deficiency of Benney’s equation and

improving the behavior of Shkadov’s model close to
threshold have been achieved: while solitary waves ex-
ist for all R, their speed and their amplitude now in-
crease at the right place. However they seem to be some-
what underestimated at large R. This model was ob-
tained by an integral-collocation method and the same
strategy was used for the second-order model leading to
Curves 6. Whereas excellent agreement with all other
second-order formulations is observed up to R ∼ 3, the
Curves turns back there, signaling a loss of the solution
and the companion possibility of finite-time singularities
that were observed in the simulations for certain flow
regimes. This phenomenon has to be related to the poor
convergence properties of the method [30]. Discrepancies
between Curves 5 (first-order) and 7 (full second-order)
become obvious only when the amplitude and the speed
of the waves are large. Curves 8 stand for the simpli-
fied second-order Galerkin model and remain very close
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Fig. 4. Wave speed as a function of the Reynolds number
for periodic wave-train solutions with α = 0.07, W = 76.4
and average thickness 〈h〉 = hN. The thick solid line is the
prediction of full second-order model, the thin line corresponds
to simplified second-order model and the dashed line is the
prediction of the first-order model.
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Fig. 5. Wave profiles corresponding to R = 10 and the same
other conditions as in Figure 4, see corresponding caption.

to Curves 5. This suggests that, as far as the celerity
and maximum height of the waves are concerned, the dif-
ferences between the first-order model and the simplified
second-order models are minor, which might be due to the
fact that they both resolve the flow with a single polyno-
mial (however, see below for more subtle differences at-
tributed to viscous dispersion effects). Inertial terms con-
tribute only to the full second-order model. This might be
an explanation of the discrepancy between results from the
full and the simplified models but one must keep in mind
that the former resolves the flow field on three polynomi-
als instead of one and that the corrections to the parabolic
profile, measured by s1 and s2, are liable to play an im-
portant role.

In Figures 2 and 3 we have added some results
(“plus” signs) of calculations performed by Chang et al.
using the two-dimensional first-order boundary layer

equations (12–15) and given in Table 1 of [20]. Whereas
close to onset we observe good agreement with all models
(except Shkadov’s, which does not treat it properly), di-
vergences appear at larger R. The waves’ characteristics
have the right order of magnitude but we do not know
how to explain the discrepancies (if they are significant at
all) for the computational approaches are very different.

A second test is obtained from the properties of long-
wavelength periodic wave-trains. We have determined the
wave’s velocity c as a function of the Reynolds R number
at given wavevector α (Fig. 4) or reciprocally of α at given
R (Fig. 6), and studied the waves’ profiles (Fig. 5). These
special solutions approaching homoclinicity are computed
by means of a pseudo-spectral method combined with an
Euler-Newton continuation scheme [38] using up to 256
complex Fourier modes. Periodic boundary conditions are
taken at a distance λ = 2π/α where α is the chosen
wavevector. We assume that plane is vertical (B = 0)
and that the thickness of the film averaged over one wave-
length 〈h〉 is kept fixed and equal to hN as derived from
R = 1

3h
3
N. Figures 4 and 5 displays our results for α = 0.07

and a Weber number W = 76.4, in view of a comparison
with DNS results in [6] (see Fig. 11 there).

The speed of these wave-trains is given as a function
of the Reynolds number in Figure 4. Solutions of the full
and simplified second-order Galerkin models both bifur-
cate from the basic state on the neutral stability curve at
R ≈ 0.32 with c ≈ 0.995 in good agreement with DNS re-
sults. Differences between the predictions of the two mod-
els become noticeable only for large amplitude waves. For
the first-order model (11, 26), the same family of waves
builds up at R ≈ 1.26 with c = 1 and the correspond-
ing curve displays wrinkles very similar to those obtained
with the first-order boundary layer equations by Chang
et al. [8].

The waves’ profiles obtained from our three models for
R = 10 are given in Figure 5. Whereas the curves corre-
sponding to the two second-order models are practically
indistinguishable, ahead of the hump the profile obtained
with the first-order model exhibit running capillary ripples
of much larger amplitude. This corroborates the experi-
mental observations showing that Shkadov’s model (2, 3),
a first-order approximation, overestimates the amplitude
of the ripples (see e.g. Fig. 8.26 in [2]). This is also in
agreement with the corresponding numerical findings in
Figures 16 and 18 of [6].

Not unexpectedly, the strong difference between the
results obtained with the simplified second-order model
and the first-order model can obviously be attributed to
the omission of the viscous dispersion terms in the latter.
By contrast, inertial effects contributing to the difference
between the two second-order models seem of smaller im-
portance, at least for the properties and in the range of
Reynolds numbers considered.

The computations of Salamon et al. have also shown
that drastically different bifurcation scenarios take place
when viscous dispersion effects are modified [6]). It is
indeed well-known that in the case of the Kuramoto-
Sivashinsky equation (KS) traveling wave solutions
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Fig. 6. Speed c of periodic wave-trains as a function of their wavevector α for R = 2.066, Γ = 3375, B = 0 (vertical plane)
and fixed averaged thickness 〈h〉 = hN (conditions chosen to fit those of [6]) (a) first-order model; (b) simplified second-order
Galerkin model.

bifurcate from a standing wave through a pitchfork bifur-
cation and that the bifurcation becomes imperfect when
dispersion is added [39]. In our case, the bifurcation di-
agram associated to this phenomenon is displayed as
Curves 1a, and 1b in velocity-wavenumber plots of Fig-
ure 6. In agreement with the DNS results of [6] (see
Figs. 12 and 14 there), we see that the picture is
drastically changed when viscous dispersion effects are
taken into account, i.e. when we pass from first (a)
to second order (b). Indeed, in the first case with no
viscous dispersion, Branch 1a connects the primary so-
lutions to slow waves (c < 1) whereas Branch 1b cor-
responds to fast waves (c > 1) and in the second case
the reverse situation holds when viscous dispersion effects
are taken into account. Similar results using our previ-
ous second-order model derived in [29] have been pre-
sented elsewhere [40]. The other curves labelled as 2, 3,
4 in Figures 6a and 6b correspond to different solutions
approaching, at small wavevectors, various types of soli-
tary waves having several humps behind the front rip-
ples and bifurcating from subharmonics of the primary
solution. They are shown here in view of a comparison
with the findings of Salamon et al. [41].

Finally, our approach giving direct access to the flow
rate q, we can equally chose to prescribe the average film
thickness 〈h〉 or the average flow rate 〈q〉. This possibil-
ity allowed us to compare our findings with experiments
performed at controlled flow rate. Table 1 displays the
wave speeds computed from our modeling, to those de-
rived from several DNSs and laboratory experiments, with
either 〈h〉 = hN or 〈q〉 = qN = 1

3h
3
N, when appropriate.

Satisfactory agreement is again obtained in all cases.

To conclude, the realistic modeling of film flows is an
important step towards the understanding of the growth
of space-time disorder in free-surface open flows. In the
two-dimensional case, our systematic strategy has led to
three more and more complex models, which, as far as the
properties of solitary waves are concerned, yield results
that are in general agreement with previous investigations.

Table 1. Comparison between wave speeds (cm/s) from the
experimental work of Kapitza and Kapitza, from DNSs and
from the present modelling. Parameters are R = 6.07, W =
76.4 (mean flow rate 〈q〉 = 0.123 cm2/s, surface tension σ/ρ =
29 cm3/s2, wavelength λ = 1.77 cm).

〈h〉 = hN 〈q〉 = qN

Eqs. (11, 38–40) 23.5 20.4

Eqs. (11, 41) 23.5 20.3

Eqs. (11, 26) 23.2 20.5

Kapitza & Kapitza [10] – 19.5

Ho & Patera [42] 24.7 –

Salamon et al. [6] 23.5 –

Ramaswamy et al. [7] 23.1 –

The inter-comparison of our models further points out the
role of viscous dispersion (first-order model compared to
the simplified second-order model) and that of the inertial
terms and a finer description of the velocity field (compar-
ison of the full and simplified second-order models).

Studying more closely the full second-order model, one
can show by linearization of (38–40) that the relaxation
time of the fluctuations of the flow rate q̃ around the value
forced by the local thickness (i.e. by setting q̃ = q − 1

3h
3)

is more than one order of magnitude larger than the re-
laxations times of s1 and s2 that describe the corrections
to the semi-parabolic basic velocity profile. According to
the theory of dynamical systems, the latter variables are
fast and therefore slaved to the slow variables, here h and
q. This property should be used to eliminate them adia-
batically, which would yield a model in terms of h and q
only, but with more complicated effective nonlinearities.
Pushing the argument, one can notice that only h is neu-
tral at the long wavelength limit and that q should also be
eliminated, yielding an effective “surface equation”. How-
ever the argument is only asymptotic and, as is often the
case, the corresponding series has no good convergence
properties. This ends with solutions having singular be-
havior at too large Reynolds numbers. The regularization



C. Ruyer-Quil and P. Manneville: Improved modeling of flows down inclined planes 369

of the series has proven its merits but apparently leads to
an overestimation of the nonlinear saturating corrections.
We believe that in the range of intermediate Reynolds
numbers considered, the future is with models involving
h and q only. Such models should be more accurate than
Shkadov’s model, more complete than our own first-order
models, past [29] or present (only the latter is consistent at
first order in the gradient expansion within the framework
of weighted residual methods resting on polynomial), and
extending our simplified second-order model. This exten-
sion could derive from a reduction of our full second-order
model by an adiabatic elimination of irrelevant fields at
which we now work. As we showed, our strategy is not
limited to the modelling of two-dimensional flows and the
extension to three dimensions is relatively straightforward.
The detailed study of curved solitary waves, secondary in-
stabilities towards three-dimensional patterns and irregu-
lar waves in view of a comparison with experimental ob-
servation will thus now be our major concern.
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